MATH 112A Review: Laplace and Polar Coordinates

1. Let $f(x,y) = xy + x^2y$. What is Δf ?

Solution: We have that $f_x = y + 2xy$ and $f_y = x + x^2$. Thus, $f_{xx} = 2y$ and $f_{yy} = 0$. Hence, $\Delta f = 2y$.

2. Let $f(x,y) = e^{\sqrt{x^2+y^2}}$. What is Δf in polar coordinates?

Solution: Let $g(r, \theta) = f(r \cos x, r \sin \theta)$. Then,

$$g(r,\theta) = e^{\sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta}} = e^r.$$

Hence, $g_{\theta\theta}=0$ and $g_r=e^r$. Thus, $\Delta f=\frac{1}{r}\frac{\partial}{\partial r}\left(rg_r\right)+0=\frac{1}{r}\frac{\partial}{\partial r}\left(re^r\right)=\frac{1}{r}e^r+e^r$ in polar coordinates.

3. Let f(x, y, z) = xyz. What is Δf ?

Solution: We have that $f_x = yz$, $f_y = xz$, and $f_z = xy$. Hence, $f_{xx} = 0$, $f_{yy} = 0$, and $f_{zz} = 0$. Hence, $\Delta f = 0$.